Mark scheme – Group 2

Question	n Answer/Indicative content	Marks	Guidance
	Equation : Mg + 2CH ₃ COOH \rightarrow (CH ₃ COO H ₂ \checkmark	D)2Mg + 3 (AO 2.6)	ALLOW Mg(CH ₃ COO) ₂ ALLOW multiples IGNORE Oxidation numbers in formulae IGNORE state symbols
			Mark independently from equation
	Oxidation : Mg from 0 to $+2$	(AO 1.2)	ALLOW 1 mark for correct oxidation numbers
	Reduction: H from +1 to 0 √	(AO 1.2)	but incorrectly linked to redox.
	Total	3	
2 i	$\left[\begin{array}{c} \hline \mathbf{Ca} \end{array} \right]^{2+} 2 \left[\begin{array}{c} \hline \mathbf{Br} \end{array} \right]^{-}$ Ca shown with either 8 or 0 electrons AND Br shown with 8 electrons with 7 crosses and (or vice versa) \checkmark Correct charges on both ions \checkmark	2 d 1 dot (AO1.2×1) (AO2.5×1)	ALLOW separate Br- ions, i.e. $\begin{bmatrix} & & & & & & \\ & & & $
	Atomic radius Ba has a greater atomic radius than Ca OR Ba has more shells OR Ba has more shielding √ i Attraction Nuclear attraction is less in Ba OR (outer) electrons in Ba are less attraction nucleus) OR Increased distance / shielding in Ba outweighs increased nuclear charge √	3 (AO1.1×1) cted (to (AO2.3×2)	Comparison required throughout ORA throughout For more shells, ALLOW higher energy level IGNORE more orbitals OR more sub-shells IGNORE 'different shell' or 'new shell' ALLOW Ba has less nuclear pull' OR 'Ba electrons are less tightly held' IGNORE less effective nuclear charge' IGNORE 'nuclear charge' for 'nuclear attraction' ALLOW easier to oxidise Ba

		Ionisation energy Ionisation energy of Ba is less OR (outer) electrons in Ba are less attracted (to nucleus) OR easier to remove (outer) electrons in Ba √		Examiner's Comments It was important to answer the question asked. A number of responses lost marks for describing the general trend down group 2 without making reference at all to calcium and barium. Most candidates managed to score at least one mark here but a considerable proportion missed the second marking point explaining that nuclear attraction was less in Ba.
		Total	5	
3		Route 1 Reactant: Add water (to Ba) OR H ₂ O in equation \checkmark Balanced equation: Ba + 2H ₂ O \rightarrow Ba(OH) ₂ + H ₂ \checkmark Route 2 Balanced equation with O ₂ 2Ba + O ₂ \rightarrow 2BaO \checkmark Balanced equation with H ₂ O BaO + H ₂ O \rightarrow Ba(OH) ₂ \checkmark	4 (AO3.3) (AO2.6) (AO3.3) (AO3.3)	ALLOW multiples in equations Balanced equation automatically collects 2 marks for Route 1 ALLOW 1 mark for BOTH reactants in route 2: i.e. React with O_2 AND then with H_2O NOTE 3 correct balanced equations \rightarrow 4 marks Examiner's Comments Many candidates were able to calculate the amount of HNO ₃ in the titration as 4.28×10^{-3} mol. Most candidates were credited for the amount of Ba(OH) ₂ as 2.14×10^{-3} mol, half the calculated amount of HNO ₃ . Candidates then need to scale up this value by 1000/25 to obtain the concentration as 0.0856 mol dm ⁻³ . All intermediate calculations gave values to 3 significant figures. Discrimination was extremely good, but about a third of candidates did not receive any marks. Candidates should be encouraged to practise stock titration calculations as part of their preparation for the examinations. Candidates should show clear working so that credit can be given for such responses by applying error carried forward. Many candidates produced largely unreferenced numbers.
		Total	4	
4	i	$Sr + 2H_2O \rightarrow Sr(OH)_2 + H_2 \checkmark$	1(AO2.6)	ALLOW correct multiples including fractions IGNORE state symbols

				Examiner's Comments
				Nearly half of the candidates did not answer this question correctly, mainly because of incorrect balancing or the formation of strontium oxide instead of strontium hydroxide.
		Two points (√√) from With calcium:		IGNORE gives out less/more heat, less reactive, less gas
	ii	1. less vigorous fizzing/bubbling/effervescence	2(AO2.3×2	Examiner's Comments
		 dissolves more slowly/slower reaction solution has a lower pH/less alkaline precipitate forms/less soluble)	Most candidates were able to identify at least one difference, although a significant number of responses stated the opposite trend
		Total	3	
5	i	CaO + H ₂ O → Ca(OH) ₂ \checkmark	1 (AO 2.8)	ALLOW multiples IGNORE state symbols ALLOW CaO + $2H_2O \rightarrow Ca(OH)_2 + H_2O$ AND CaO + $H_2O \rightarrow Ca^{2+} + 2OH^{-1}$
		both pH values > 7 AND ≤ 14	1	ALLOW ranges within these values but ranges must not overlap
	ii	AND pH with SrO > pH with CaO √	(AO 1.2)	Examiner's Comments
				These two sub-questions were well answered.
		Total	2	
				CARE: ALLOW any pairing if electrons correct, e.g. $3 \begin{bmatrix} Ca \end{bmatrix}^{2+} 2 \begin{bmatrix} & \times & \\ \bullet & N & \bullet \\ \bullet & \bullet & \end{bmatrix}^{3-}$ IF 8 electrons shown around Ca,
6	i	$3 \begin{bmatrix} Ca \end{bmatrix}^{2+} 2 \begin{bmatrix} & & \times \\ & & N \end{bmatrix}^{3-}$ Ca shown with either 0 or 8 electrons AND N shown with 8 electrons with 5 dots and 3 crosses	2	'extra' 3 electrons around N must match symbol for Ca electrons, e.g. $3 \begin{bmatrix} \times \times \\ \times \\ \times \\ \times \\ \times \\ \times \end{bmatrix}^{2+} 2 \begin{bmatrix} \times \\ \times \\ \cdot \\$
		3 Ca AND 2 N AND correct charges on ions, i.e. $3Ca^{2+} 2N^{3-} \checkmark$	(AO2.5)	ALLOW drawing with 3 Ca²⁺ and 2 N³⁻ e.g. r 1 2+
		Circles OR Brackets NOT required	(AO1.2)	$\begin{bmatrix} Ca \end{bmatrix}_{3} \begin{bmatrix} \cdot N \\ \cdot \cdot \end{bmatrix}_{2}^{2}$
				Examiner's Comments
				Most candidates showed a correct, clear 'dot and cross' diagram. Lower attaining candidates sometimes used wrong charges, not enough

				ions or an incorrect number of electrons on N. Covalently-bonded molecules were seen, but rarely.
	ï	$Ca_{3}N_{2} + 6H_{2}O \rightarrow 3Ca(OH)_{2} + 2NH_{3}$ $Ca(OH)_{2} \text{ OR } NH_{3} \text{ as product } \checkmark$ All species correct AND correct balancing \checkmark	2 (AO2.6×2)	ALLOW NH4OH for NH3 ALLOW Ca ₃ N ₂ + 8H ₂ O \rightarrow 3Ca(OH) ₂ + 2NH4OH IGNORE other products Examiner's Comments Exemplar 1 (*) Colour infide reacts with whether to form a solution containing two shalling composeds. What are equation for the reactor. Cable + 3H ₂ O \rightarrow 2NH3 + 3CaO = pt Exemplar 2 (*) Colour infide reacts with water to form a solution containing two shalling composeds. What are equation for the reactor. Cable + 3H ₂ O \rightarrow 2NH3 + 3CaO = pt (*) Colour infide reacts with water to form a solution containing two shalling composeds. What are equalized for the reactor. Cable 2 = 2 = Cable 2 = 2 = 2 = 2 = 2 = 2 = 2 = 2 = 2 = 2
				nitrogen (see the two responses above). This part discriminated very well. ALLOW labels if seen outside circles provided it
	iii	$\widehat{\mathbf{v}}_{q} (\widehat{\mathbf{v}}_{q}) (\widehat$	2 AO1.1×2	ALLOW labels if seen outside circles provided it clear which circle the label applies to ALLOW 1 mark for Ca AND O shown alternately, each in FOUR circles <i>i.e. with no charges or incorrect charges</i> ALLOW 1 mark for 2+/+2 AND 2-/-2 shown alternately in FOUR circles (with no Ca and O) DO NOT ALLOW All circles with same ion, <i>i.e.</i> <i>all Ca</i> ²⁺ <i>OR all O</i> ²⁻ ALLOW 1 mark for 4 Ca ²⁺ AND 4O ²⁻ but NOT shown alternately e.g. $Q^2 - Q^2 - Q^2 - Q^2$

				being involved with the central N atom (a triple and double bond). If correct, this was given, reflecting a candidate's knowledge at this stage of the course. Candidates are advised to take great care in showing clear symbols for electrons (dots and crosses or other symbols). Parts of the diagram where a dot and a cross cannot be distinguished cannot be credited. This part discriminated extremely well.
		Total	8	
7	а	Ba(OH)₂ + 2HC/ → BaC/₂ + 2H₂O √	1	ALLOW multiples IGNORE state symbols (even if wrong) Examiner's Comments Most candidates were able choose hydrochloric acid as the reagent that would form BaCl ₂ as a product in a neutralisation reaction but a significant number were unable to balance this straightforward equation.
	b	Increasing size: Atomic radius increases OR more shells OR more (electron) shielding √	3	 FULL ANNOTATIONS WITH TICKS, CROSSES, CON, etc MUST BE USED IGNORE more orbitals OR more sub-shells Alternative must refer to shells ALLOW Energy levels for shells ALLOW more electron repulsion between shells IGNORE just 'shielding' (more / greater needed) IGNORE 'nuclear shielding' IGNORE 'pull' for attraction IGNORE 'electrons less tightly held' IGNORE 'nuclear charge' for 'nuclear attraction'
		Attraction Nuclear attraction decreases OR (outer) electron(s) experience less attraction ✓ Ionisation energy Ionisation energy Ionisation energy Ionisation energy Iess energy needed to remove electron(s) √		IGNORE 'easier to remove electron' Energy is required ALLOW less energy to oxidise Examiner's Comments This question was another one based upon the AS part of the specification, and most candidates secured the first two marking points. The third mark, based upon the idea of less energy needed to remove electron(s) as the group is descended, was not scored by many. Instead, candidates loosely talked about an increasing ease of electron removal.
		Total	4	

8	а	i	Magnesium (atoms) has been oxidised AND Because it has lost two electrons √ Copper (ions) has been reduced AND Because it has gained two electrons √	2	 IGNORE use of oxidation numbers if electron gain/loss is mentioned. Electrons gain/loss could be in half equations In the absence of text look for evidence on the equation ALLOW 'donated' for 'lost' Assume 'Cu' refers to copper in 'CuSO4' ALLOW one mark two electrons gained and lost for each species but oxidation/reduction is incorrect or is omitted ALLOW one mark for correct oxidation and reduction if electron transfer is omitted and correct changes of oxidation state are shown (ie Mg 0> (+)2 AND Cu (+)2 to 0) ALLOW 'two electrons transferred from magnesium to copper Examiner's Comments This type of question in the past has proved difficult but the current cohort found little
					difficulty. By far, the most common error was to use changes in oxidation numbers as the basis of the redox rather than using the number of electrons gained and lost for the explanation of the redox process.
		ï	Mg(s) + 2H₂O(I) ◊Mg(OH) ₂(aq) + H₂(g) Correct reactants and products √ Balance and state symbols √	2	ALLOW multiples ALLOW Mg(OH) ₂ (s) ALLOW Mg(s) + H ₂ O(g) OR H ₂ O(l) MgO(s) + H ₂ (g) including state symbols for one mark Examiner's Comments The equation for the reaction between magnesium and water was well known – but many erroneously assumed MgO was formed.
	b	i	Ca(OH)₂ OR Calcium hydroxide OR CaO OR Calcium oxide √ 1	1	ALLOW Calcium carbonate OR CaCO ₃ Examiner's Comments The unusual equation involving P4 molecules was answered well. Weaker candidates assumed that phosphorus was monatomic and consequentially lost credit.
		ii	6Ca + P₄ ◊ 2Ca₃P₂ √	1	ALLOW multiples IGNORE state symbols Examiner's Comments

```
3.1.2 Group 2
```

				This potentially difficult dot-and-cross diagram of the ions present was done well by candidates.
				For first mark: If 8 electrons are shown on the cation then the extra electron in the anion must match the symbol chosen for the electrons in the cation. IGNORE inner shells IGNORE circles
	iii	$3 x \begin{bmatrix} xx \\ x \\ x \\ x \\ xx \end{bmatrix}^{2^{+}} 2 x \begin{bmatrix} \bullet \bullet \bullet \\ \bullet$	2	ALLOW one mark if both electron arrangements and charges are correct but only one of each ion is drawn.
				ALLOW (brackets not required) 3[Ca ²⁺] 3[Ca] ²⁺ [Ca ²⁺] ₃ 2[P ³⁻] 2[P] ³⁻ [P ³⁻] ₂ DO NOT ALLOW [Ca ₃] ²⁺ [3Ca] ²⁺ [Ca] ³²⁺
				[P ₂] ³⁻ [2P] ³⁻ [P] ₂
		Total	8	
9	. . .	$Sr^+(g) \rightarrow Sr^{2+}(g) + e^- \checkmark$	1	ALLOW $Sr^*(g) - e^- \rightarrow Sr^{2*}(g)$ ALLOW e for electron (i.e. charge omitted)IGNORE states on the electronExaminer's CommentsThe equation for the second ionisation energy of strontium proved no difficulty for the most able candidates who provided both the correct state symbols and charges. It was surprising however that 40% of candidates failed to score what was meant to be a straightforward mark.
	ï	<i>Atomic radius</i> larger atomic radius OR more shells √	3	FULL ANNOTATIONS MUST BE USED ALLOW ORA: comparison needed for each mark. ALLOW 'more / higher energy levels' ALLOW 'electrons further from nucleus' ALLOW 'extra / new shell'
		Effect of nuclear charge / shielding		IGNORE more orbitals OR more sub-shells

			OR more / increased shielding √ <i>Nuclear attraction</i> less nuclear attraction OR less attraction on electrons √		ALLOW more electron repulsion from inner shells IGNORE responses with no comparison IGNORE nuclear charge / effective nuclear charge ALLOW 'less nuclear pull' OR 'electrons held less tightly' Examiner's Comments This descriptive question was well answered with the vast majority of candidates picking up two of the three available marks. Where a candidate scored two marks it was often due to the omission of any comment about the reduction in attraction between the nucleus and the electron as the group was descended. A common error was to discuss the reduction in nuclear charge rather than nuclear attraction.
			Total	4	
1 0	а	i	2Ca + O ₂ → 2CaO \checkmark	1	ALLOW multiples e.g. Ca + ½O ₂ → CaO IGNORE state symbols Examiner's Comments This straightforward equation was well known.
		ii	Thermal decomposition ✓	1	Examiner's Comments Some candidates omitted 'thermal' and so did not secure the mark while others wrote out the equation rather than stating the type of reaction.
	b		Effervescence OR fizzing OR bubbling OR gas produced AND The solid OR calcium OR the metal would dissolve OR disappear OR a (colourless) solution forms \checkmark Ca + 2H ₂ O \rightarrow Ca(OH) ₂ + H ₂ \checkmark	2	IGNORE 'hydrogen produced' but ALLOW 'hydrogen gas produced' DO NOT ALLOW an incorrectly named gas (eg CO ₂) produced ALLOW multiples IGNORE state symbols Examiner's Comments In the observation section most candidates noted effervescence but few then added the necessary observation of the calcium dissolving often despite Ca(OH) ₂ (aq) appearing in the equation. The equation was well answered generally, although CaOH was not an uncommon species.

		Total	4	
1	i	Reaction 1: Ba + $2H_2O \rightarrow Ba(OH)_2 + H_2 \checkmark$ Reaction 2: Ba ₃ N ₂ + $6H_2O \rightarrow 3Ba(OH)_2 + 2NH_3$ Correct products \checkmark Balancing \checkmark	3	Ignore state symbols Examiner's Comments Both equations were relatively challenging. Reaction 1 was a direct question about reactions of Group 2 elements. Reaction 2 demanded a higher level of application based
				upon information given. Many identified the alkaline gas as NH3, but then incorrectly assumed that the alkaline solution was BaO instead of Ba(OH) ₂ . Weaker candidates suggested equations with hypothetical species that could not have born any relation to formulae that they might have encountered before.
				ALLOW 'Giant lattice with ionic bonds' ALLOW 'Giant ionic bonds' DO NOT ALLOW 'atoms or molecules or dipoles'
	ii	Giant ionic (lattice) ✔	1	Examiner's Comments This question was relatively well answered, although some candidates did negate the mark by referring to molecules of Ba ₃ N ₂ either directly or by indirect reference to intermolecular forces.
			1	Ba must have a 2+ charge Ba can be with or without octet. IGNORE lack of charge on O ₂ ²⁻ ion
				O _{2²⁻ ion to have 12 electrons belonging to O atoms + 2 other electrons of another symbol.}

		$\begin{bmatrix} x \\ x $		The 2 other electrons must match Ba if Ba has an octet. If O electrons are shown as 6 of one symbol and 6 of another, each O must have six electrons of the same symbol ALLOW $\begin{bmatrix} x & x \\ x & Ba \\ x & x \end{bmatrix}^{2^{+}} \begin{bmatrix} \bullet \bullet \bullet \bullet \bullet \\ \bullet \bullet \bullet \bullet & \bullet \\ \bullet \bullet & \bullet & \bullet \end{bmatrix}^{2^{-}}$ OR $\begin{bmatrix} x & x \\ x & Ba \\ x & x \\ x & x \end{bmatrix}^{2^{+}} \begin{bmatrix} \bullet \bullet \bullet \bullet \bullet \\ \bullet \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet & \bullet$
		Total	5	
1 2	i	$Sr(s) + 2H_2O(I) \rightarrow Sr(OH)_2(aq) + H_2(g)$ Note: all state symbols required	1	allow multiples
	ii	$n(Sr) = n(Sr^{2+}) = 0.200 / 87.6 = 2.28 \times 10^{-3} (1)$ $[Sr^{2+}] = 2.28 \times 10^{-3} \times 1000 / 250 = 9.13 \times 10^{-3} (mol dm^{-3}) (1)$	2	allow ecf
	iii	Greater volume with Ca AND larger amount / more moles of Ca OR A_r Ca is smaller (1) n(Ca) = 0.200/40.1 = 0.005(0) (mol) (1)	3	ora allow values up to calculator values

3.1.2 Group 2

	volume H ₂ with Sr = 55 cm ³ AND volume with Ca = 120 cm ³ OR 65 cm ³ more H ₂ with Ca (1)		allow volumes ± 1 cm ³
	Total	6	