3.1.2 Group 2

Mark scheme - Group 2

Question		Answer/Indicative content	Marks 3 $(A O 2.6)$	ALLOW Mg($\left.\mathrm{CH}_{3} \mathrm{COO}\right)_{2}$ ALLOW multiples IGNORE Oxidation numbers in formulae IGNORE state symbols Mark independently from equation ALLOW 1 mark for correct oxidation numbers but incorrectly linked to redox.
1		Equation: $\quad \mathrm{Mg}+2 \mathrm{CH}_{3} \mathrm{COOH} \rightarrow\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2} \mathrm{Mg}+$ $\mathrm{H}_{2} \checkmark$ Oxidation: $\quad \mathrm{Mg}$ from 0 to $+2 \checkmark$ Reduction: $\quad \mathrm{H}$ from +1 to $0 \checkmark$	$\begin{gathered} 3 \\ (\mathrm{AO} 2.6) \\ \\ (\mathrm{AO} 1.2) \\ (\mathrm{AO} 1.2) \end{gathered}$	
		Total	3	
2	i	Ca shown with either 8 or 0 electrons AND Br shown with 8 electrons with 7 crosses and 1 dot (or vice versa) Correct charges on both ions \checkmark	(AO1.2×1) (AO2.5×1)	ALLOW separate Br - ions, i.e. For first mark, if eight electrons are shown around Ca , the 'extra' electrons around Br must match the symbol chosen for the electrons for Na . IGNORE inner shells Circles or brackets not required Examiner's Comments Most candidates were able to give the correct diagrams for ionic bonding, although care needs to be taken that diagrams are well drawn with both charges given. Some gave diagrams for covalent bonding.
	ii	Atomic radius Ba has a greater atomic radius than Ca OR Ba has more shells OR Ba has more shielding \checkmark Attraction Nuclear attraction is less in Ba OR (outer) electrons in Ba are less attracted (to nucleus) OR Increased distance / shielding in Ba outweighs increased nuclear charge \checkmark	(AO1.1×1) (AO2.3×2)	Comparison required throughout ORA throughout For more shells, ALLOW higher energy level IGNORE more orbitals OR more sub-shells IGNORE 'different shell' or 'new shell' ALLOW Ba has less nuclear pull' OR 'Ba electrons are less tightly held' IGNORE less effective nuclear charge' IGNORE 'nuclear charge' for 'nuclear attraction' ALLOW easier to oxidise Ba

3.1.2 Group 2

		Ionisation energy Ionisation energy of Ba is less OR (outer) electrons in Ba are less attracted (to nucleus) OR easier to remove (outer) electrons in $\mathrm{Ba} \checkmark$		Examiner's Comments It was important to answer the question asked. A number of responses lost marks for describing the general trend down group 2 without making reference at all to calcium and barium. Most candidates managed to score at least one mark here but a considerable proportion missed the second marking point explaining that nuclear attraction was less in Ba.
		Total	5	
3		Route 1 Reactant: Add water (to Ba) $\mathbf{O R} \mathrm{H}_{2} \mathrm{O}$ in equation \checkmark Balanced equation: $\mathrm{Ba}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Ba}(\mathrm{OH})_{2}+\mathrm{H}_{2} \checkmark$ Route 2 Balanced equation with O_{2} $2 \mathrm{Ba}+\mathrm{O}_{2} \rightarrow 2 \mathrm{BaO} \checkmark$ Balanced equation with $\mathrm{H}_{2} \mathrm{O}$ $\mathrm{BaO}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Ba}(\mathrm{OH})_{2} \checkmark$	(AO3.3) (AO2.6) (AO3.3) (AO3.3)	ALLOW multiples in equations Balanced equation automatically collects 2 marks for Route 1 ALLOW 1 mark for BOTH reactants in route 2: i.e. React with O_{2} AND then with $\mathrm{H}_{2} \mathrm{O}$ NOTE 3 correct balanced equations $\rightarrow 4$ marks Examiner's Comments Many candidates were able to calculate the amount of HNO_{3} in the titration as 4.28×10^{-3} mol. Most candidates were credited for the amount of $\mathrm{Ba}(\mathrm{OH})_{2}$ as $2.14 \times 10^{-3} \mathrm{~mol}$, half the calculated amount of HNO_{3}. Candidates then need to scale up this value by $1000 / 25$ to obtain the concentration as $0.0856 \mathrm{~mol} \mathrm{dm}^{-3}$. All intermediate calculations gave values to 3 significant figures. Discrimination was extremely good, but about a third of candidates did not receive any marks. Candidates should be encouraged to practise stock titration calculations as part of their preparation for the examinations. Candidates should show clear working so that credit can be given for such responses by applying error carried forward. Many candidates produced largely unreferenced numbers.
		Total	4	
4	i	$\mathrm{Sr}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Sr}(\mathrm{OH})_{2}+\mathrm{H}_{2} \checkmark$	1(AO2.6)	ALLOW correct multiples including fractions IGNORE state symbols

3.1.2 Group 2

				Examiner's Comments Nearly half of the candidates did not answer this question correctly, mainly because of incorrect balancing or the formation of strontium oxide instead of strontium hydroxide.
	ii	Two points ($\checkmark \checkmark$) from With calcium: 1. less vigorous fizzing/bubbling/effervescence 2. dissolves more slowly/slower reaction 3. solution has a lower $\mathrm{pH} / l \mathrm{less}$ alkaline 4. precipitate forms/less soluble	$\begin{gathered} 2(\mathrm{AO} 2.3 \times 2 \\) \end{gathered}$	IGNORE gives out less/more heat, less reactive, less gas Examiner's Comments Most candidates were able to identify at least one difference, although a significant number of responses stated the opposite trend
		Total	3	
5	i	$\mathrm{CaO}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Ca}(\mathrm{OH})_{2} \checkmark$	$\begin{gathered} 1 \\ (\mathrm{AO} 2.8) \end{gathered}$	ALLOW multiples IGNORE state symbols ALLOW CaO $+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Ca}(\mathrm{OH})_{2}+\mathrm{H}_{2} \mathrm{O}$ AND $\mathrm{CaO}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Ca}^{2+}+2 \mathrm{OH}^{-}$
	ii	both pH values >7 AND ≤ 14 AND pH with $\mathrm{SrO}>\mathrm{pH}$ with $\mathrm{CaO} \checkmark$	$\begin{gathered} 1 \\ (\mathrm{AO} \\ 1.2) \end{gathered}$	ALLOW ranges within these values but ranges must not overlap Examiner's Comments These two sub-questions were well answered.
		Total	2	
6		$3[\mathrm{Ca}]^{2+} 2\left[\begin{array}{lll} \bullet & \bullet & \times \\ \bullet & \mathrm{N} & \bullet \\ \bullet & \bullet &]^{3-} \end{array}\right.$ Ca shown with either 0 or 8 electrons AND N shown with 8 electrons with 5 dots and 3 crosses (or vice versa) 3 Ca AND 2 N AND correct charges on ions, i.e. $3 \mathrm{Ca}^{2+} 2 \mathrm{~N}^{3-}$ Circles OR Brackets NOT required	$\begin{gathered} 2 \\ \text { (AO2.5) } \\ \text { (AO1.2) } \end{gathered}$	CARE: ALLOW any pairing if electrons correct, e.g. $3[\mathrm{Ca}]^{2+} 2\left[\begin{array}{ccc} \times \times \times & \times \\ \bullet & \mathrm{N} & \bullet \\ \bullet & { }^{3-} \end{array}\right]^{-}$ IF 8 electrons shown around Ca , 'extra' 3 electrons around N must match symbol for Ca electrons, e.g. $3\left[\begin{array}{c} \times \times \times \\ \times \times \times \\ \times \mathrm{Ca}_{\times} \times \\ \times \times \end{array}\right]^{2+} 2\left[\begin{array}{lll} \times & \bullet & \\ \bullet & \mathrm{N} & \times \\ & \bullet & \bullet \end{array}\right]^{3-}$ IGNORE inner shells ALLOW drawing with $3 \mathrm{Ca}^{2+}$ and $2 \mathrm{~N}^{3-}$ $[\mathrm{Ca}]_{3}^{2+}\left[\begin{array}{cc} \times \times \\ \bullet & \mathrm{N} \\ \bullet \bullet \end{array}\right]_{2}^{3-}$ Examiner's Comments Most candidates showed a correct, clear 'dot and cross' diagram. Lower attaining candidates sometimes used wrong charges, not enough

3.1.2 Group 2

			ions or an incorrect number of electrons on N . Covalently-bonded molecules were seen, but rarely.
ii	$\mathrm{Ca}_{3} \mathrm{~N}_{2}+6 \mathrm{H}_{2} \mathrm{O} \rightarrow 3 \mathrm{Ca}(\mathrm{OH})_{2}+2 \mathrm{NH}_{3}$ $\mathrm{Ca}(\mathrm{OH})_{2} \mathrm{OR} \mathrm{NH}_{3}$ as product \checkmark All species correct AND correct balancing \checkmark	$\begin{gathered} 2 \\ (\mathrm{AO} 2.6 \times 2) \end{gathered}$	ALLOW $\mathrm{NH}_{4} \mathrm{OH}$ for NH_{3} ALLOW Ca3 $\mathrm{N}_{2}+8 \mathrm{H}_{2} \mathrm{O} \rightarrow 3 \mathrm{Ca}(\mathrm{OH})_{2}+2 \mathrm{NH}_{4} \mathrm{OH}$ IGNORE other products Examiner's Comments Exemplar 1 \qquad Exemplar 2 (ii) Caldum nitride reacts with wator to form a solution containing two alkaine compounds. $\begin{aligned} & \text { Witc an oquation for this reaction. } \\ & \left.\mathrm{C}\left(\mathrm{NO}_{3}\right)_{2}+\mathrm{H}_{2} \mathrm{O}\right) \rightarrow \mathrm{Ca}(\mathrm{OH})_{2}+2 \mathrm{HNO}_{3} \text {....... } 2 \text {] } \end{aligned}$ Most candidates were given 1 of the 2 available marks for showing the formula of one correct product, $\mathrm{Ca}(\mathrm{OH})_{2}$ or NH_{3}. The best answers identified both products and were then able to balance the equation. Common errors included 'CaO' as a product and incorrect compounds of nitrogen (see the two responses above). This part discriminated very well.
iii	Ca^{2+} shown alternately in FOUR circles \checkmark O^{2-} shown alternately in FOUR circles \checkmark	$2 \mathrm{AO1.1} \mathrm{\times 2}$	ALLOW labels if seen outside circles provided it clear which circle the label applies to ALLOW 1 mark for Ca AND O shown alternately, each in FOUR circles i.e. with no charges or incorrect charges ALLOW 1 mark for 2+/+2 AND 2-/-2 shown alternately in FOUR circles (with no Ca and O) DO NOT ALLOW All circles with same ion, i.e. all Ca^{2+} OR all O^{2-} ALLOW 1 mark for $4 \mathrm{Ca}^{2+}$ AND 4O2- but NOT shown alternately e.g.

3.1.2 Group 2

			Examiner's Comments Most candidates completed the diagram with correct Ca^{2+} and O^{2-} ions, shown alternately. Many different errors were seen for which 1 of the 2 marks could sometimes be given, e.g. 2+ and $2-$, or Ca and O shown alternately. Some candidates used incorrect ions, with N^{3-} the most common as a carry-over from (i) and (ii). Some candidates completed each face of the structure with the same ion, rather than different ions alternately.
	'Dot and cross' of central N to O OR N \checkmark Rest of 'dot and cross' diagram correct or	$\begin{gathered} 2(\mathrm{AO} 2.5 \times 2 \\) \end{gathered}$	Electrons do NOT need to be shown paired. 'Dot and cross' of NO_{2} ALLOW 1st mark for $\mathrm{N} \rightarrow \mathrm{O}$ OR $\mathrm{N}=\mathrm{O}$ DO NOT ALLOW ions CARE For 2nd mark, watch for stray paired OR unpaired electrons on central N ALLOW 10 electrons around central N atom for 2 marks, i.e. Examiner's Comments $\mathrm{N}_{2} \mathrm{O}$ is a very unfamiliar molecule for candidates and they found this 'dot and cross' diagram far more difficult than diagram for $\mathrm{Ca}_{3} \mathrm{~N}_{2}$ in (i). Information in the question clearly stated that a nitrogen atom is in the centre but many diagrams were drawn with the O atom at the centre. It was also fairly common to see NO_{2} rather than $\mathrm{N}_{2} \mathrm{O}$. Candidates found the bonding of the O atom to the central N atom easier than the double or dative covalent bond between the two N atoms. Many candidates included lone pairs on the central N atom despite this resulting in a non-linear molecule. (The question states that the molecule is non-linear). It was common to see an expanded octet with 10 electrons

3.1.2 Group 2

				being involved with the central N atom (a triple and double bond). If correct, this was given, reflecting a candidate's knowledge at this stage of the course. Candidates are advised to take great care in showing clear symbols for electrons (dots and crosses or other symbols) Parts of the diagram where a dot and a cross cannot be distinguished cannot be credited. This part discriminated extremely well.
		Total	8	
7	a	$\mathrm{Ba}(\mathrm{OH})_{2}+2 \mathrm{HCl} \rightarrow \mathrm{BaCl}_{2}+2 \mathrm{H}_{2} \mathrm{O} \checkmark$	1	ALLOW multiples IGNORE state symbols (even if wrong) Examiner's Comments Most candidates were able choose hydrochloric acid as the reagent that would form BaCl_{2} as a product in a neutralisation reaction but a significant number were unable to balance this straightforward equation.
	b	Increasing size: Atomic radius increases OR more shells OR more (electron) shielding \checkmark Attraction Nuclear attraction decreases OR (outer) electron(s) experience less attraction \checkmark Ionisation energy lonisation energy decreases OR less energy needed to remove electron(s) \checkmark	3	FULL ANNOTATIONS WITH TICKS, CROSSES, CON, etc MUST BE USED IGNORE more orbitals OR more sub-shells Alternative must refer to shells ALLOW Energy levels for shells ALLOW more electron repulsion between shells IGNORE just 'shielding' (more / greater needed) IGNORE 'nuclear shielding' IGNORE 'pull' for attraction IGNORE 'electrons less tightly held' IGNORE 'nuclear charge' for 'nuclear attraction' IGNORE 'easier to remove electron' Energy is required ALLOW less energy to oxidise Examiner's Comments This question was another one based upon the AS part of the specification, and most candidates secured the first two marking points. The third mark, based upon the idea of less energy needed to remove electron(s) as the group is descended, was not scored by many. Instead, candidates loosely talked about an increasing ease of electron removal.
		Total	4	

3.1.2 Group 2

8	a	i	Magnesium (atoms) has been oxidised AND Because it has lost two electrons \checkmark Copper (ions) has been reduced AND Because it has gained two electrons \checkmark	2	IGNORE use of oxidation numbers if electron gain/loss is mentioned. Electrons gain/loss could be in half equations In the absence of text look for evidence on the equation ALLOW 'donated' for 'lost' Assume 'Cu' refers to copper in 'CuSO4' ALLOW one mark two electrons gained and lost for each species but oxidation/reduction is incorrect or is omitted ALLOW one mark for correct oxidation and reduction if electron transfer is omitted and correct changes of oxidation state are shown (ie Mg 0 --> (+)2 AND Cu (+)2 to 0) ALLOW 'two electrons transferred from magnesium to copper Examiner's Comments This type of question in the past has proved difficult but the current cohort found little difficulty. By far, the most common error was to use changes in oxidation numbers as the basis of the redox rather than using the number of electrons gained and lost for the explanation of the redox process.
		ii	$\left.\mathrm{Mg}(\mathrm{s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \stackrel{\mathrm{Mg}}{\mathrm{O}} \mathrm{OH}\right)_{2}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})$ Correct reactants and products \checkmark Balance and state symbols \checkmark	2	ALLOW multiples ALLOW $\mathrm{Mg}(\mathrm{OH})_{2}(\mathrm{~s})$ ALLOW $\mathrm{Mg}(\mathrm{s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ OR $\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \mathrm{MgO}(\mathrm{s})+$ $\mathrm{H}_{2}(\mathrm{~g})$ including state symbols for one mark Examiner's Comments The equation for the reaction between magnesium and water was well known - but many erroneously assumed MgO was formed.
	b		$\mathrm{Ca}(\mathrm{OH})_{2}$ OR Calcium hydroxide OR CaO OR Calcium oxide \checkmark 1	1	ALLOW Calcium carbonate $\mathrm{OR} \mathrm{CaCO}_{3}$ Examiner's Comments The unusual equation involving P4 molecules was answered well. Weaker candidates assumed that phosphorus was monatomic and consequentially lost credit.
		ii	$6 \mathrm{Ca}+\mathrm{P}_{4} \diamond 2 \mathrm{Ca3P}{ }^{2} \downarrow$	1	ALLOW multiples IGNORE state symbols Examiner's Comments

3.1.2 Group 2

				This potentially difficult dot-and-cross diagram of the ions present was done well by candidates.

3.1.2 Group 2

			OR more / increased shielding \checkmark Nuclear attraction less nuclear attraction OR less attraction on electrons \checkmark		ALLOW more electron repulsion from inner shells IGNORE responses with no comparison IGNORE nuclear charge / effective nuclear charge ALLOW 'less nuclear pull' OR 'electrons held less tightly' Examiner's Comments This descriptive question was well answered with the vast majority of candidates picking up two of the three available marks. Where a candidate scored two marks it was often due to the omission of any comment about the reduction in attraction between the nucleus and the electron as the group was descended. A common error was to discuss the reduction in nuclear charge rather than nuclear attraction.
			Total	4	
0	a		$2 \mathrm{Ca}+\mathrm{O}_{2} \rightarrow 2 \mathrm{CaO} \checkmark$	1	ALLOW multiples e.g. $\mathrm{Ca}+1 / 2 \mathrm{O}_{2} \rightarrow \mathrm{CaO}$ IGNORE state symbols Examiner's Comments This straightforward equation was well known.
		ii	Thermal decomposition \checkmark	1	Examiner's Comments Some candidates omitted 'thermal' and so did not secure the mark while others wrote out the equation rather than stating the type of reaction.
	b		Effervescence OR fizzing OR bubbling OR gas produced AND The solid OR calcium OR the metal would dissolve OR disappear OR a (colourless) solution forms \checkmark $\mathrm{Ca}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Ca}(\mathrm{OH})_{2}+\mathrm{H}_{2} \checkmark$	2	IGNORE 'hydrogen produced' but ALLOW 'hydrogen gas produced' DO NOT ALLOW an incorrectly named gas (eg CO_{2}) produced ALLOW multiples IGNORE state symbols Examiner's Comments In the observation section most candidates noted effervescence but few then added the necessary observation of the calcium dissolving often despite $\mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{aq})$ appearing in the equation. The equation was well answered generally, although CaOH was not an uncommon species.

3.1.2 Group 2

3.1.2 Group 2

		OR OR $\left[\begin{array}{l} \mathbf{x} \mathbf{x} \\ \mathbf{x} \\ \mathbf{x} \mathrm{Ba}_{\mathbf{x}}^{\mathbf{x}} \\ \mathbf{x} \mathbf{x} \end{array}\right]^{2+}\left[\begin{array}{llll} \bullet \bullet & 0 & \\ \mathbf{x} & \mathrm{O} & \bullet & \mathrm{O}^{\circ} \\ \mathbf{x} & \bullet & 0 \end{array}\right]^{2-}$ OR $\left[\begin{array}{l} \mathbf{x} \\ \mathbf{x a n}_{\mathbf{x}} \mathrm{Ba}_{\mathbf{x}} \\ \mathbf{x} \mathbf{x} \end{array}\right]^{2+}\left[\begin{array}{ccc} \bullet \bullet & \bullet \bullet \\ \mathbf{x}^{\mathbf{x}} & \bullet & 0 \\ \mathbf{x} & \bullet & \bullet \end{array}\right]^{2-}$		The 2 other electrons must match Ba if Ba has an octet. If O electrons are shown as 6 of one symbol and 6 of another, each O must have six electrons of the same symbol ALLOW OR Examiner's Comments This question was designed to be difficult, but many candidates rose to the challenge. Weaker candidates simply drew a 'dot-and-cross' diagram for BaO_{2} in which they treated each oxygen species as an oxide ion each having a single negative charge. Many stronger candidates did realise from the structure given in the question that there was only a single bond between the two oxygen atoms, as was clear from their suggested diagram. Only the stronger candidates managed to incorporate correctly the electrons from barium, to arrive at a correct version of the bonding of BaO_{2}.
		Total	5	
$\begin{aligned} & 1 \\ & 2 \end{aligned}$	i	$\mathrm{Sr}(\mathrm{~s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightarrow \mathrm{Sr}(\mathrm{OH})_{2}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})$ Note: all state symbols required	1	allow multiples
	ii	$\begin{aligned} & n(\mathrm{Sr})=n\left(\mathrm{Sr}^{2+}\right)=0.200 / 87.6=2.28 \times 10^{-3}(1) \\ & {\left[\mathrm{Sr}^{2+}\right]=2.28 \times 10^{-3} \times 1000 / 250=9.13 \times 10^{-3}(\mathrm{~mol}} \\ & \left.\mathrm{dm}^{-3}\right)(1) \end{aligned}$	2	allow ecf
	iii	Greater volume with Ca AND larger amount / more moles of Ca OR $A_{\mathrm{r}} \mathrm{Ca}$ is smaller (1) $n(\mathrm{Ca})=0.200 / 40.1=0.005(0)(\mathrm{mol})(1)$	3	ora allow values up to calculator values

3.1.2 Group 2

| | | | |
| :--- | :--- | :--- | :--- | :--- |
| volume H_{2} with $\mathrm{Sr}=55 \mathrm{~cm}^{3}$ AND volume with $\mathrm{Ca}=$
 $120 \mathrm{~cm}^{3}$ OR $65 \mathrm{~cm}^{3}$ more H_{2} with $\mathrm{Ca}(1)$ | allow volumes $\pm 1 \mathrm{~cm}^{3}$ | | |
| | Total | 6 | |

